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Abstract

Clustering is an important and challenging statistical problem for which there is an extensive

literature. Modeling approaches include mixture models and product partition models. Here we

develop a product partition model and a model selection procedure based on Bayes factors from

intrinsic priors. We also find that the choice of the prior on model space is of utmost importance,

almost overshadowing the other parts of the clustering problem, and we examine the behavior

of posterior odds based on different model space priors. We find, somewhat surprisingly, that

procedures based on the often-used uniform prior (in which all models are given the same prior

probability) lead to inconsistent model selection procedures. We examine other priors, and find

that a new prior, the hierarchical uniform prior leads to consistent model selection procedures

and has other desirable properties. Lastly, we examine our procedures, and competitors, on a

range of examples.
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1 Introduction

Suppose that Y is an observable random variable with sampling distribution in a class of parametric

densities F = {f(y|θ), θ ∈ Θ}, where Θ is in the space Rk, k ≥ 1, and we observe a sample of n

independent data y = (y1, y2, ..., yn) coming from the densities in the class F. An interesting problem

for its wide range of applications, and theoretical challenges, arises when we look at the sample as

being split into clusters, where all of the observations in a cluster come from the same sample density

f(y|θ), and the parameter θ of the density changes across clusters. The clustering problem consists of

making inference on the number of clusters in the sample and the location of the sample observations

into these clusters.

Assuming that a family of sampling models F has been chosen, two difficulties appear in the

clustering problem. A first one is the assessment of the prior distribution for the discrete parame-

ters, the number of clusters and the partitions of the sample into these clusters. There is also the

assessment of the prior for the (usually) continuous parameters θ of the densities of the partitions.

Because of the typical lack of substantive prior information on these parameters, we often do not

have enough information for a precise formulation of the priors. This leads us to propose the use of

objective priors.

A second difficulty is that of computing the very many posterior model probabilities of the

sampling models involved, even when the sample size is moderate. For instance, for a sample size

as small as 20, the number of possible models (partitions) is as large as 51724158235372, which

makes it infeasible to compute all of the posterior model probabilities, although fortunately only a

small number of models will have nonnegligible posterior probabilities. Therefore, there is a need

to develop an efficient stochastic search algorithm for computing posterior probabilities for those

models having nonnegligible posterior probabilities.

1.1 Background

The literature on clustering is enormous. There are many ways to approach the problem, and here

we take a model-based approach that can be divided into approaches based on mixture models (see,

for instance, Fraley and Raftery 2002, 2007 and references therein), and approaches based on product

partition models (PPMs). The latter is a model-based approach introduced by Hartigan (1990) and

Barry and Hartigan (1992) (see Booth et al. 2008 and references therein). In this paper the sampling

models for clustering are also product partition models constructed with normal regression models,

and objective priors for models and for model parameters will be introduced.

In recent clustering approaches, Dirichlet distributions and PPMs are used as a prior for the clus-
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ters in the hierarchical Bayesian framework. Quintana and Iglesias (2003) propose an algorithm for

the explicit construction of clusters based on PPM-type priors for partitions of experimental units.

They noted that the proposed model is quite flexible because PPMs can be used to express a wide

variety of prior distributions on partitions. Lau and Green (2007) propose a general formulation

for Bayesian model-based clustering that is optimal with respect to a specified loss function. They

compare the new method to some recently discussed methods involving stochastic search or hierar-

chical clustering under the Dirichlet process by maximizing the posterior probability. In a somewhat

different approach, Booth et al. (2008) propose a stochastic search algorithm driven by a mixture

of two Metropolis-Hastings algorithms, one for small scale changes to individual objects and another

for large scale moves involving entire clusters.

Here, we find that the choice of the prior on model space is of utmost importance, almost over-

shadowing the other parts of the clustering problem. We examine a number of priors, including the

typical default uniform prior (where every model has the same prior probability) and find that such a

prior leads to inconsistent procedures. We then develop a new prior on model space, the hierarchical

uniform prior, that does not suffers from such disadvantages. For the continuous parameters we use

intrinsic priors, and combine all pieces to evaluate a model using its posterior odds.

1.2 Summary

The rest of the paper is organized as follows. In Section 2 we describe the structure of the clustering

problem. Some background on different approaches to the clustering problem, and a description

of the approach taken here, is given in Section 3. In Section 4 we develop priors for the discrete

parameters, the partitions and the number of clusters, and Section 5 develops intrinsic priors for the

continuous parameters, illustrated with the case of linear models. The model priors are evaluated

in Section 6, where we obtain our consistency and inconsistency results. We describe our search

algorithm in Section 7, a variation of the biased random walk of Booth et al. (2008), and in Section

8 we illustrate the performance of our procedure on both real and simulated data. Finally, Section

9 contains a concluding discussion, and there is a technical appendix with proofs of theorems.

2 Models, Partitions and Configurations

We begin by formally describing the structure of the clustering problem, defining the terms that we

will be using in the subsequent analyses. We start with a sample y = (y1, y2, . . . yn). For given p, we

define a partition of the sample into p clusters, denoted by rp = (r
(p)
1 , ..., r

(p)
n ), where r

(p)
i , i = 1, . . . n,

is an integer between 1 and p denoting the cluster to which yi is assigned.
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Figure 1: The structure of the clustering problem for n = 4. There are 15 possible partitions

(models), the Bell number for n = 4. In each of the cluster classes, p = 1, 2, 3, 4 there are

1, 7, 6, 1 partitions, the Stirling numbers of the second kind. Within the cluster class for

p = 2 there are two configuration classes, corresponding to the configurations y|yyy and

yy|yy. The number of partitions in each configuration class is given in (2), and the number

of configuration classes in each cluster class is b(n, p) of (3).

p = 1 p = 2 p = 3 p = 4
R1 R2 R3 R4

y1y2y3y4

y1|y2y3y4 y1y2|y3y4

y2|y1y3y4 y1y3|y2y4

y3|y1y2y4 y1y4|y2y3

y4|y1y2y3

y1|y2|y3y4

y1|y3|y2y4

y1|y4|y2y3

y2|y3|y1y4

y2|y4|y1y3

y3|y4|y1y2

y1|y2|y3|y4

As we will see in detail below, the observations within the same configuration class have the same

sampling distribution, while those in different classes have different sampling distributions. Thus,

under this structure, a given partition rp is equivalent to a model Mrp . We will provide details in

Section 3.2.

We next look at an example that, perhaps, will clarify the definitions, and we will refer to Figure

1 for illustration. Let Rp represent the set of partitions of the sample into p clusters, which we call

the cluster class. The number of partitions in Rp is given by the Stirling number of second kind,

S(n, p). The four cluster classes of Figure 1 each have a Stirling number of partitions. The total of

partitions of the sample R = ∪pRp is given by the Bell number, B =
∑n

p=1 S(n, p), which in the case

of Figure 1 is 15.

Suppose that the sample is split into p clusters, and let ni be the number of components of the

sample located in the ith cluster for i = 1, 2, ..., p. The number of partitions of the sample of size n

into p clusters S(n, p) can be written as

S(n, p) =
∑

n1+...+np=n
1≤n1≤...≤np

(
n

n1 · · ·np

)
1

R(n1, ..., np)
, (1)

where
(

n
n1···np

)
is the multinomial coefficient and R(n1, ..., np) =

∏n
i=1[
∑p

j=1 I(nj = i)]! corrects the

count by considering the redundant strings corresponding to the vector (n1, ..., np). For instance,

for the vector (n1, ..., np) such that n1 = ... = np−4 < np−3 = np−2 < np−1 = np, we have that
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R(n1, ..., np) = (p− 4)!2!2!.

Denoting the set of partitions for a fixed vector (n1, ..., np) by Rp;n1,...,np , we can express the class

of partitions with p clusters Rp as

Rp = ∪n1+...+np=n
1≤n1≤...≤np

Rp;n1,...,np ,

where Rp;n1,...,np denotes a configuration class, that is, the class of all partitions of the sample that

have the same configuration (n1, ..., np). The number of partitions in a configuration class is given

by the corresponding term in (1), that is

Number of partitions in Rp;n1,...,np =

(
n

n1 · · ·np

)
1

R(n1, ..., np)
. (2)

As we see in Figure 1, a cluster class Rp can have more than one configuration class; for p = 2

there are two configuration classes. In general, the number of configuration classes within Rp is

the number of way the integer n can be partitioned into p parts, which we denote by b(n, p). This

number does not seem to have a closed form expression as a function of p and n. However, it can be

shown (Jara 2007, personal communication) that b(n, p) satisfies the recursive equation

b(n, p) = b(n− 1, p− 1) + b(n− p, p), 1 ≤ p ≤ n, (3)

with b(n, 1) = 1, and b(n, n) = 1. The number b(n, p) can be large, even for moderate values of n and

p, for instance b(80, 35) = 89037. However, it is much smaller than S(80, 35), which has 82 digits.

Now that the structure of the cluster problem is clear, we next want to look at ways in which

we can attach sampling models to this structure, and the ways in which prior distributions on the

models can be assigned. For example, because the configuration class Rp;n1,...,np contains partitions

with the same structure, ni, we model the data in each configuration class as coming from the same

unknown density
∏ni
j=1 f(yj |θi), for i = 1, ..., p. What is, perhaps, less clear is how to assign prior

probabilities to the models, and we will see those details in Section 4.

3 Cluster Models

Currently, the most popular approach to cluster analysis is based on mixture models. We briefly

describe that approach, and explain why we do not believe it is the best approach. We then describe

the product partition model which, we believe, not only respects the structure of the clustering

problem, but also can provide meaningful answers to the clustering problem.
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3.1 Clustering with Mixture Models

Clustering has been one of the main traditional applications of the mixture model. Under a mixture

model the observations y1, . . . , yn are assumed to be independently drawn from a model of the form

f(y|p, θ, ω) =

p∑
j=1

ωj f(y|θj), ωi ≥ 0,
∑
i

ωi = 1,

where p, (θ1, ..., θp), and (ω1, ..., ωp) are unknown parameters. Not only does this formulation com-

pletely ignore the structure outlined in Section 2, it has incurred criticism for a number of other

reasons. For example, Stephens (2000), among others, note that there is a “label-switching problem”

in that any permutation of the components of the parameter vector ((ω1, θ1), . . . , (ωp, θp)) has no

effect on the density f(y|p, θ, ω), and this implies that the individual components (ωi, θi) or ωi are

not identifiable. It is also the case that, due to the symmetry of the model, a new observation yn+1

is classified a posteriori in any component of the mixture with probability 1/p, whatever the sample,

and thus this model is useless for classifying new observations into groups.

We add that, even if the parameters (p, θ, ω) in f(y|p, θ, ω) were all known, we are not able to

compute the posterior probability of a given partition of the sample into p clusters by using only

this completely specified model. To be able to do so we need to add latent variables to impute the

original model from which the mixture model comes.

3.2 Product Partition Models

For the structure of the cluster problem, a product partition model seems to be a natural way to

introduce the sampling model and the prior. Given a partition rp = (r
(p)
1 , . . . , r

(p)
n ), we introduce a

vector θp = (θ
r
(p)
1

, ..., θ
r
(p)
n

), an unknown parameter vector of dimension n whose components indicate

sampling densities in the class F. The sampling density of the data y conditional on a given partition

rp is

f(y|p, rp, θp) =
n∏
i=1

f(yi|θr(p)i

) =

p∏
j=1

∏
i:ri=j

f(yi|θj). (4)

Thus, the partition of the sample rp has associated with it p different values of the parameter θp,

and the likelihood of the parameters p, rp and θp is given by (4). We will suppress the superscript

(p) in r
(p)
i if there is no confusion, and the likelihood will be simply written as

∏n
i=1 f(yi|θri).

The partition r1 = (1, 1, ..., 1) corresponds to the case where there is only one cluster in the

sample. Its corresponding likelihood function is given by f(y|1, r1, θ) =
∏n
i=1 f(yi|θ), θ ∈ Θ.

Since each partition is associated with a sampling density, and recalling that each partition

corresponds to a model, it follows that the number of sampling models involved in a clustering
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problem of a sample of size n is exactly the Bell number. The class of these models M can be seen

as the union M = ∪1≤p≤n Mp, where Mp is the class of models for p clusters. To complete the

specification of the sampling models, we need a prior distribution π for the parameters p, rp, θp so

the generic Bayesian model is given as

Mrp : {f(y|p, rp, θp), π(p, rp, θp|n)}.

A natural decomposition of this prior distribution is π(p, rp, θp|n) = π(θp|p, rp, n) π(p, rp|n), and in

the class of models for p clusters, Mp, the posterior probability of model Mrp , for rp ∈ Rp, is

π(rp|y,p, n) =
π(p, rp|n)m(y|rp, n)∑

rp∈Rp π(p, rp|n)m(y|rp, n)
, m(y|rp, n) =

∫
f(y|p, rp, θp)π(θp|p, rp, n)dθp,

where m(y|rp, n) is the marginal of the data under model Mrp . Since f(y|1, r1, θ) is nested in

f(y|p, rp, θp) it is convenient to write the posterior probability of Mrp in the class Rp as

π(rp|y,p, n) =
π(p, rp|n)Brp,r1(y)∑

rp∈Rp π(p, rp|n)Brp,r1(y)
, if rp ∈ Rp,

where Brp,r1(y) =
m(y|rp,n)
m(y|r1,n) represents the Bayes factor for comparing model Mrp against the model

for only one cluster, Mr1 .

In the class of all models M the posterior probability of model Mrp is given by

π(rp|y) =
π(p, rp|n) Brp,r1(y)∑n

p=1

∑
rp∈Rp π(p, rp|n) Brp,r1(y)

, if rp ∈ R (5)

and the posterior probability of p by

π(p|y) =

∑
rp∈Rp π(p, rp|n)Brp,r1(y)∑n

p=1

∑
rp∈Rp π(p, rp|n)Brp,r1(y)

, 1 ≤ p ≤ n. (6)

We note that Br1r1(y) = 1.

Using only these Bayes factors we can also compare the non-nested models contained in the class

M. Indeed, the Bayes factor for comparing models Mrp and Mrq , for arbitrary p and q, is given by

Brprq(y) =
Brp,r1 (y)

Brqr1 (y) , and, consequently, the posterior odds of models Mrp and Mrq can be written

as the product of the Bayes factor and the prior odds, that is
π(rp|y)
π(rq |y) = Brprq(y)

π(p,rp|n)
π(q,rq |n) .
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4 Prior Distributions on Models

Once a parametric family of sampling distributions F is specified, the first task for computing the

posterior probability in (5) and (6) is that of assessing the prior distribution π(θp|p, rp, n)π(p, rp|n).

In this section we concentrate on priors for the models, π(p, rp|n), which we further factor as

π(p, rp|n) = π(rp|p, n)π(p|n).

In this representation we note that the factor π(rp|p, n) is much more important than π(p|n). Al-

though both factors depend on n, the former is much more sensitive to n, as the size of the cluster

classes grows exponentially with n.

4.1 Priors on the Partitions

The Uniform Prior The first prior one may use, in the absence of information about the models,

is the uniform prior, which gives the same probability to every model, that is,

πU (p, rp|n) =
1

Bn
, (7)

where Bn is the Bell number. As we will see, this seemingly innocuous choice can have unforseen

consequences.

The Ewens-Pitman Prior The Dirichlet random process provides a marginal distribution for

(p, rp) given by

πEP(p, rp|λ, n) =
Γ(λ)

Γ(n+ λ)
λp

p∏
j=1

Γ(nj), p = 1, ..., n, rp ∈ Rp, (8)

where λ is an unknown positive hyperparameter which has to be assessed. This prior has been used

extensively (Crowley 1997, Quintana and Iglesias 2003, Booth et al. 2008, Jensen and Liu 2008,

McCullagh and Yang 2008). A detailed scheme to derive the prior (8) is presented in McCullagh and

Yang (2008). They also note that the limit, as p→∞, is the Ewens process (Ewens 1972, Ishwaran

and Zarepour 2002, Pitman 1996), also called the Chinese restaurant process (Aldous 1985, Pitman

1996).1

1We have referred to this distribution in a variety of ways, and each way has received criticism from some quarter.
We believe that Ewens-Pitman allocates the correct degree of recognition.
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The Jensen-Liu Prior An alternative to the prior πEP is that given by Jensen and Liu (2008),

πJL(p, rp|λ, n) ∝ λp−1(λ+ p)

p∏
i=1

(λ+ i)−ni , (9)

and according to their authors “favors equal allocations of observations, that is, the prior probability

that a new observation is placed in any one of the existing clusters is uniform.”

The Hierarchical Uniform Prior (HUP) One of our goals is to develop an objective prior for

models, and to do so we consider the structure of the cluster problem as described in Section 2.

Thus, we first split the entire set of partitions by conditioning on the number of clusters, and also

split these sets into subsets of partitions containing exchangeable configurations.

To carry out our prior specification, we start from the decomposition

π(p, rp|n) = π(rp|Rp;n1,...,np , n)π(Rp;n1,...,np |p, n)π(p|n).

We note that the difference among the partitions rp in Rp;n1,...,np is simply the different ways we

assign ni components of the sample of size n to the density labeled by θi, for i = 1, ..., p. This implies

that a priori these partitions should have the same probability, although the likelihood will vary

across the partitions. Then, it seems reasonable to assign the uniform prior to rp in Rp;n1,...,np (this

ensures exchangeability), that is,

π(rp|Rp;n1,...,np , n) =

(
n

n1 · · ·np

)−1

R(n1, ..., np), rp ∈ Rp;n1,...,np .

Next, we make the reasonable assumption that the sets of partitions Rp;n1,...,np in Rp obtained

as the vector (n1, ..., np) varies are a priori equally likely. Then, recalling (3), it follows that

π(Rp;n1,...,np |p, n) = b(n, p)−1, (10)

and the hierarchical uniform specification is complete, with the exception of π(p|n), which we will

discuss in Section 4.2.

Comparisons Both the Ewens-Pitman and Jensen-Liu priors require specification of the hyper-

parameter λ. For Ewens-Pitman, it is known that the expected prior number of clusters is given

by

E(p|λ, n) =
n∑
p=1

λ

λ+ p− 1
.
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Table 1: Prior probabilities for exchangeable partition sets in R3 for n = 10. The designation

{1, 3, 6} refers to having three clusters with 1, 3 and 6 observations; {2, 3, 5} has 2, 3 and 5

observations. (Both Ewens-Pitman and Jensen-Liu have λ = 1.)

Prior Probabilities
Configuration Ewens-Pitman Hierarchical Uniform Uniform Jensen-Liu

{1, 3, 6} 0.17 0.14 0.09 0.15
{2, 3, 5} 0.10 0.14 0.27 0.08

Thus, large values of λ will lead to a larger number of clusters. However, the value of the prior

probabilities is quite sensitive to the choice of λ, and selection of this hyperparameter is important.

(In Quintana and Iglesias (2003) the distribution (8) was ruled out due to its sensitivity to λ; see

their Table 2, page 570.) Rather than presenting a lengthy sensitivity analysis of these priors, we

just want to illustrate their performance with a small numerical example; further comparisons are in

Section 6. Table 1 shows prior probability specifications for two partitions that are very close, only

differing by moving one observation. But we see that only the hierarchical uniform prior gives these

partitions the same prior probability.

A priori it does not seem that, for n = 10, we would have any reason to assign different proba-

bilities to the configurations {1, 3, 6} and {2, 3, 5}, but this is what is done by the other priors. The

fact that there are 840 partitions corresponding to the configuration {1, 3, 6}, and 2525 partitions

corresponding to {2, 3, 5} not only explains the numbers for the uniform prior in Table 1, but also

illustrates its shortcomings. Moreover, the preferences reverse, with Ewens-Pitman and Jensen-Liu

favoring {1, 3, 6}, and the uniform prior favoring {2, 3, 5}.

4.2 Prior Distributions for the Number of Clusters

To complete the specification of the prior π(p, rp|n) we need to construct π(p|n). For doing that

we observe that when analyzing a cluster problem of a sample of size n we desire a relatively small

number of clusters in the sample, and therefore the extreme case of having n clusters should be given

a priori a very small probability. Extending this argument for any n, it seems reasonable that the

prior distribution of the number of clusters be, in a smooth way, a decreasing function of the number

of clusters p.

A candidate for π(p|n) can be obtained by assuming that the number of clusters p follows a

truncated Poisson distribution P(p|λ), where λ is an unknown parameter. Assuming the default

improper Jeffreys distribution for λ, πJ(λ) ∝ λ−1/2, the marginal distribution for p is given by∫
P(p|λ)πJ(λ)dλ which we now truncate to the set {1, ..., n}. This prior is rather close to the
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Figure 2: Prior probabilities from the Poisson-Intrinsic prior of (11) (left panel), and the

Poisson-Jeffreys prior (right panel), n = 20.

uniform prior in the sense that it has a very flat tail, and consequently for large n it will dilute the

prior probabilities in {1, ..., n}.

A way to derive a prior for p with thinner tails than the above one is obtained by replacing the

Jeffreys prior πJ(λ) with the intrinsic prior πI(λ|λ0 = 1) constructed by testing the Poisson null

hypothesis H0 : λ = λ0 versus H1 : λ ∈ R+. This prior, given by (Moreno et al. 2005), is

πI(λ|λ0 = 1) =
λ−1/2

Γ(1/2)
e−(λ+1)

0F1(1/2, λ),

where 0F1(1
2 , λ) denotes the confluent hypergeometric function. The reason for taking λ0 = 1 is

that the one cluster model is the reference model throughout the analysis. The resulting marginal

intrinsic distribution for p is

πI(p|n) =
mI(p)∑n
p=1m

I(p)
, p = 1, ..., n, mI(p) =

∫ ∞
0

λp e−λ

p!
πI(λ|λ0 = 1) dλ. (11)

Figure 2 shows a plot of the Poisson-Intrinsic prior mI(p|n = 20) along with the Poisson-Jeffreys

prior. There we see that the drop in prior probabilities, as we move from one cluster, is very flat for

the Poisson-Jeffreys prior, but steeper for the Poisson-Intrinsic prior.

Then, using (11) together with the development above, we obtain the prior distribution for (p, rp),
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for rp ∈ Rp;n1,...,np and p = 1, ..., n,

π(p, rp|n) =

(
n

n1 · · ·np

)−1

R(n1, ..., np) b(n, p)
−1 mI(p)∑n

p=1m
I(p)

.

5 Intrinsic Priors for the Continuous Parameters θp

As we noted in Section 4, for computing the Bayes factors Brp,r1(y) , rp ∈ R, prior distributions for

the continuous parameters θ and θp are needed. The usual objective choices are the reference priors

πN (θ) and πN (θp) associated with the sampling models f(y|1, r1, θ) and f(y|p, rp, θp), respectively

(Berger et al. 2009). However, these priors are typically improper, and while this is not an inconve-

nience for estimating θ and θp, it is a serious problem for model comparison, as they leave the Bayes

factor Brp,r1(y) defined only up to an arbitrary multiplicative constant.

Fortunately, the sampling model f(y|1, r1, θ) is nested in f(y|p, rp, θp) and then the reference

priors can be converted into the so-called intrinsic priors (Berger and Pericchi 1996a, Moreno 1997,

Moreno et al. 1998), for which not only is the Bayes factor well-defined, but also the intrinsic prior

for θp concentrates probability mass around θ, a desirable condition for model comparison (known

as the Savage continuity condition). Furthermore, the intrinsic priors have been proved to behave

extremely well in a wide variety of problems (Berger and Pericchi 1996b; Berger and Mortera 1999;

Kim and Sun 2000; Casella and Moreno 2005; 2009; Girón et al. 2006; Moreno 2005; Moreno et

al. 2010; Casella et al. 2009, among others).

The intrinsic prior for the parameter θp, conditional on an arbitrary but fixed point θ, is given

by

πI(θp|θ) = πN (θp|rp)Ey(`p)|θp
f(y|1, r1, θ)∫

f(y(`p)|p, rp, θp)πN (θp)dθp
,

where the expectation is taken with respect to the sampling distribution f(y(`p)|p, rp, θp) with y(`p)

a vector of dimension `p = kp + 1. Here `p denotes the minimal training sample size needed for

estimating θp with the prior πN (θp); that is, the minimal sample size for which

0 <

∫
f(y1, .., yk|θp, rp)πN (θp)dθp <∞.

It can be easily checked that πI(θp|θ) is a probability distribution. The unconditional intrinsic prior

for θp is given by

πI(θp) =

∫
πI(θp|θ)πN (θ)dθ,

and the pair
(
πN (θ), πI(θp)

)
is the intrinsic prior for comparing models Mr1 and Mrp . We note

that they are improper priors whose moments typically do not exist, which seems to be a reasonable

12



property for objective priors, although they are well-calibrated priors in the sense that both depend

on a unique arbitrary multiplicative constant, the arbitrary constant inherited from πN (θ), which

cancels out in the ratio. Therefore, the Bayes factor for intrinsic priors

Brp,r1(y) =

∫
f(y|p, rp, θp)πI(θp)dθp∫
f(y|1, r1, θ)πN (θ)dθ

, rp ∈ R,

is free of arbitrary constants, needs neither subjective input nor actual (data-dependent) training

samples, and is completely automatic.

5.1 The Case of Linear Models

We now consider the case where the class of parametric sample densities, F, is the class of linear

models with k regressors. For example, suppose that the sample (y1, ..., yn) follows a normal linear

model

y = Xβ + ε, ε ∼ Nn(ε|0, τ2In),

where X is an n× k design matrix of full rank, β is a vector of regression coefficients with dimension

k, and τ2 is the common variance of the error terms. This is the sampling model for one cluster in

the sample and, in the notation of the preceding section, we have

f(y|1, r1, β, τ) = Nn(y|Xβ, τ2In).

The reference prior for the parameters of this model is πN (β, τ) = c/τ , where c is an arbitrary

positive constant.

Without loss of generality, suppose we split the sample into p clusters, where one cluster is

formed with the first n1 components of the sample, a second cluster is formed with the second n2

components, and so on. These clusters correspond to the partition of the sample as y′ = (y′1, ...,y
′
p)

and the corresponding partition of the design matrix as

X =



X1

· · ·

Xp


,
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where Xi has dimensions ni × k. Then, the sampling model for p clusters is given by

f(y|p, rp, β1, ..., βp, σp) =

p∏
i=1

Nn(yi|Xiβi, σ
2
pIni),

assuming that σ2
p is the common variance of the p clusters model.

We note that the model for p clusters can be written as the linear model

y = Vγ + η,

where V is the following upper triangular n× kp design matrix

V =


X1 0 · · · 0

X2 X2 · · · 0
...

... · · ·
...

Xp Xp · · · Xp

 ,

γ being the k × p vector γ′ = (γ′1, . . . , γ
′
p), where γ1 = β1, γ2 = β2 − β1, . . . , γp = βp − βp−1 are k

dimensional vectors, and the random vector η is distributed as Nn(η|0, σ2
pIn). Thus, the sampling

model for p clusters is now given by

f(y|p, rp, γ1, . . . , γp, σp) = Nn(y|Vγ, σ2
pIn).

Since f(y|1, r1, β, τ) is nested in f(y|p, rp, γ1, . . . , γp, σp), by simply making β1 = β2 = · · · = β or,

equivalently, γ1 = β, γ2 = · · · = γp = 0, direct application of the standard intrinsic methodology

gives the intrinsic prior for the parameters (γ1, . . . , γp, σp) conditional on a fixed point (β, τ), as

πI(γ1, . . . , γp, σp|β, τ) =
2

πτ(1 + σ2
p/τ

2)
Npk(γ|(Xβ,0, . . . ,0)′, (σ2

p + τ2)W−1),

where W−1 = n/(pk + 1)(V′V)−1. Note that the conditional intrinsic prior is centered at the null

model (the one cluster model), and its covariance structure depends on the covariance matrix of

the model of p clusters only. The unconditional intrinsic priors are given by the pair (πN (β, τ),

πI(γ1, . . . , γp, σp)), where

πI(γ1, . . . , γp, σp) =

∫
πI(γ1, . . . , γp, σp|β, τ)πN (β, τ) dγ dτ. (12)
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5.2 Bayes Factors for Intrinsic Priors

The objective intrinsic Bayesian model for one cluster is

Mr1 : {Nn(y|Xβ, τ2In), πN (β, τ)},

and for p clusters

Mrp : {Nn(y|Vγ, σ2
pIn), πI(γ1, . . . , γp, σp)},

where πI(γ1, . . . , γp, σp) is given in (12).

To compute the Bayes factor of model Mrp versus model Mr1 , we note that the residual sum of

squares of a partition, with cluster sizes (n1, ..., np), is equal to

RSSn1,...,np = y′(I−HV)y,

where HV = V(V′V)−1V′. Simple but cumbersome algebra shows that, due to the upper diagonal

structure of the matrix V, the residual sum of squares for that partition, with cluster sizes (n1, ..., np),

can be written as

RSSn1,...,np =

p∑
i=1

RSSni ,

where RSSni is the residual sum of squares from the regression in the ith cluster. Some lengthy

calculations render a quite simple form for the Bayes factor for intrinsic priors. The following

theorem summarizes the result.

Theorem 1 The Bayes factor for the model Mrp versus model Mr1 is given by

Brp,r1(y) =
2

π
(pk + 1)(p−1)k/2

∫ π/2

0

sin(p−1)k ϕ (n+ (pk + 1) sin2 ϕ)(n−pk)/2

(nRrp + (pk + 1) sin2 ϕ)(n−k)/2
dϕ (13)

where the statistic Rrp is

Rrp =
RSSn1 + . . .+RSSnp

RSSn
,

with RSSni = y′i(I − Hi)yi, i = 1, ..., p, RSSn = y′(I − H)y, and Hi and H the hat matrices

associated with Xi and X, respectively.

Proof. The marginal under model rp is given by

mrp(y) =

∫ {∫ {∫
Nn(y|Xβ, τ2In)πI(γ1, . . . , γp, σp|β, τ) dγ

}
πN (β, τ) dβ

}
dσp dτ.
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The integral with respect to γ and β can be done in closed form, and a change of variables from

(σp.τ) to polar coordinates gives the above expression for the Bayes factor.

Substituting the Bayes factor for the intrinsic priors (13) in expressions (5) and (6), the intrinsic

posterior probability of model Mrp and the posterior probability of p clusters in the sample, are

obtained. We want to note that with a large number of observations, the factor Rrp in (13) can get

very close to zero, causing numerical problems in computation (the integral is returned as infinite).

However, the transformation t = pk+1
Rrp

sin2(ϕ) results in a representation that is numerically very

stable, and allows for doing all computations on the log scale.

Lastly, there is one technicality to note. If a partition contains a value of ni with ni < k then, of

course, the regression cannot be fit in that cluster. We proceed by fitting the largest model feasible in

that particular partition, with the limiting case being a cluster of size 1, to which we assign Var(Y )

as the residual sum of squares. (One might consider assigning a residual sum of squares of zero to

such a cluster, but this unduly rewards clusters of size 1.)

6 The Effect of the Prior on the Limiting Bayes Procedure

It is well-known that for regular sampling models, the Bayesian model selection procedure is con-

sistent when the dimension of the sampling model is fixed and comparisons are pairwise. In that

case consistency of the Bayesian model selection procedure is inherited from the consistency of the

Bayes factor, because of the model prior does not play any role in the consistency of the procedure.

However, when the dimension of the model grows with the sample size, the model prior plays an

important role for obtaining consistency, and this is the case in clustering. As we will see, the choice

of the prior on model space is of major importance in determining the asymptotic behavior of a

clustering procedure. Surprisingly, the actual choice of Bayes factor is of almost no consequence in

determining consistency, as many Bayes factors have the same asymptotic representation.

In this section we look at the asymptotic behavior of Bayesian clustering procedures when using

the four model priors of Section 4. Perhaps the most surprising result is that the uniform prior, which

gives the same prior probability to every model, leads to an inconsistent procedure. Furthermore, this

is the case when sampling from the simpler model, and the number of clusters is finite, a situation in

which consistency is typically obtained for a Bayesian testing procedure. This behavior is explained

by observing that, in clustering, the model prior depends on the sample size and, as the sample size

tends to infinity, the speed of convergence of the prior to its limit compared with that of the Bayes

factor is now crucial.

In what follows we will assume that the number of clusters p is bounded, that is, p ≤ T < ∞.

16



We could be more general and put a growth rate on the number of clusters (Moreno et al. 2010)

but, in practice, assuming that p is bounded is certainly a realistic constraint.

For large samples, approximations of Bayes factors for intrinsic priors depend on the dimensions

of the competing models and a pseudodistance between them. If Mi and Mj are arbitrary general

normal linear models, the pseudodistance from Mi to Mj is defined as

δij =
1

σ2
i

β′i
X′i(In −Hj)Xi

n
βi.

Note that this pseudodistance is defined for every pair of models, not only nested models, and it is

not symmetric. Some useful properties of δpi are the following: (a) The distance from any model Mi

to itself is always 0, (b) If Mi is nested in Mj , then δij = 0, and (c) if model Mi is nested in Mj ,

then δki ≥ δkj for any model Mk.

We start with the following lemma, where we recall that the singular class R1;n contains only the

one cluster model Mr1 . (We use the notation [M ] to denote the model that generated the sample.)

Lemma 1 Suppose that model Mi, of dimension i, is nested in model Mj, of dimension j, and Mt

is the true model. Under the sampling model Mt, as n → ∞, the Bayes factor can be approximated

by

Brjri(y) ≈ exp

{(
i− j

2

)
log

(
n

j + 1

)}(
1 + δti
1 + δtj

)n/2
[Mt],

where δti and δtj are the pseudodistances from the true model to models Mi and Mj, respectively.

In particular, when sampling from model Mr1, for large n, the Bayes factor Brpr1(y) can be

approximated by

Brpr1(y) ≈
(
pk + 1

n

)k(p−1)/2

[Mr1 ].

Proof. The first expression immediately follows from Lemma 3 in Girón et al. (2010), and the

second expression follows from noting that δrjr1 is zero for all models Mrj .

Lemma 1 shows that for large n, when sampling from Mr1 , the Bayes factor Brpr1(y) is constant

across partitions rp in the class Rp. Moreover, this asymptotic result is not limited to intrinsic Bayes

factors; for example we know that BIC is asymptotically equivalent to the intrinsic Bayes factor.

Moreover, Casella et al. (2009) show that the approximation holds for a wide class of priors.

In the following two subsections we analyze the limiting behavior of the four priors of Section

4.1, and then examine their effect on the consistency of the resulting Bayes procedures.
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6.1 Limiting Behavior of the Model Priors

For a fixed value of p, we denote by Zn a p-dimensional random vector which takes values (n1, . . . , np)

on the set of integers satisfying the conditions n1 ≤ . . . np and n1 + · · ·+ np = 1. We write

Pr(Zn = (n1, . . . , np)|Rp) = Pr(M(n1
n
,...,

n1
n

)),
which represents the prior probability of any model arising from the priors of Section 4.1 in the set of

models Rp;n1,...,np . The study of the limiting behavior in this way cannot be done as the sample space

where the random vector Zn takes values changes with the sample size n. If we consider instead the

common space of the simplex Sp, all models can be regarded as points of this simplex. Thus, we define

the random vector Xn = 1
nZn, and study the limiting behavior of Xn for the different priors. Note

that the sample space of Xn is Sp for all n, and Pr(Xn =
(
n1
n , . . . ,

np
n |Rp

)
= Pr(Zn = (n1, . . . np)|Rp).

Theorem 2 (a) For fixed p and the hierarchical uniform prior, Xn = 1
nZn converges in distribu-

tion to a uniform prior on the simplex Sp.

(b) For fixed p and λ and the Ewens-Pitman prior, Xn = 1
nZn converges in distribution to an

improper prior distribution proportional to

1

x1 · x2 · · · (1− x1 − · · · − xp−1)
, (14)

restricted to the simplex Sp. Note that this function does not depend on λ.

(c) For fixed p and the uniform prior, Xn = 1
nZn converges in distribution, and in probability, to

a degenerate distribution concentrated at the vertex (1
p , . . . ,

1
p) of the simplex Sp.

(d) For fixed p and λ and the Jensen-Liu prior, Xn = 1
nZn converges in distribution, and in

probability, to a degenerate distribution concentrated at the interior point
( λHT
p(λ+T ) , . . . ,

λHT
p(λ+1)

)
of the simplex Sp, where λHp denotes the harmonic mean of λ+ 1, . . . , λ+ p.

Proof. The proof is given in Appendix A.2

Thus, of all four priors, only the HUP converges to a proper distribution. What is, perhaps,

most distressing is the limiting behavior of the uniform and Jensen-Liu priors, which degenerate to

a point and, thus, could have undo influence in the clustering algorithm.

6.2 Consistency of Bayes Procedures

To analyze consistency in clustering we realize that, as the sample size tends to infinity, the way

we allocate the components of the sample in the clusters is not an issue since the sequence is not
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Figure 3: The simplex for p = 3 is in grey. The point in red represents the cluster class

R1, that is, the one cluster model, while the blue line represents R2. The rest of the

simplex represents the cluster class R3. Note that cluster class R1 is a vertex (extreme

point) of the simplex, the cluster class R2 is an edge, and the model which assigns an equal

proportion to the three cluster configuration is also an extreme point of the simplex.

observable, and hence we need only to consider the proportions of the sample in the clusters. Con-

sequently, as n tends to infinity, the notion of consistency is now specific to the class of partitions

having a limiting configuration (n1/n, ..., np/n) → (ν1, . . . , νp), as n → ∞. The interpretation of

model Mν1...,νp is that observations are assigned to clusters in the proportion ν1, . . . , νp.

This also implies that, as n→∞, the model Mrp is not distinguishable from Mr′p , assuming that

both partitions rp and r′p belong to the same configuration class Rp;n1,...,np . Consequently, as n tends

to infinity, consistency will be examined in the probability space generated by the configuration

classes {Rp;n1,...,np , n1 ≤ ... ≤ np, n1 + ... + np = n, p = 1, 2, ...}, and in the probability space

generated by the cluster classes {Rp, p = 1, ..., T}. We also note that configuration classes, and

their limits, can be identified with points in the simplex Sp = {ν = (ν1, . . . .νp−1); 0 ≤ ν1 ≤ · · · ≤

νp−1, and ν1 + · · · + νp−1 < 1}, and cluster classes Rp with the simplex Sp. This is illustrated in

Figure 3, where we show the cluster classes and models for p = 3. The cluster class R3 is the entire

simplex, while R2 and R1 are an edge and a vertex, respectively. The model M1/3,1/3,1/3, the extreme
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right vertex of the simplex, is the limit of the uniform prior. Of course, this is extendable to higher

dimensional simplexes.

We now use this representation of the Bayes factor to show that a clustering procedure that uses

either the uniform prior or the Jensen-Liu prior is inconsistent.

Theorem 3 Suppose that p ≤ T and we use either the uniform prior or the Jensen-Liu prior on

the class of all partitions R = ∪Tp=1Rp. Then, when sampling from Mr1 the Bayes procedure is

inconsistent in both the cluster classes and the configuration classes. Moreover, in the probability

space generated by the cluster classes {Rp, p = 1, ..., T}, the asymptotic posterior distribution of Rp,

p = 1, ..., T , is

lim
n→∞

[Mr1 ] Pr(Rp|y) =

 1, if p = T,

0, if p ≤ T − 1.
,

thus the largest model is chosen with probability one.

Proof. The proof is given in Appendix A.3

The implications of this theorem are quite interesting, and help explain some of what we had

observed in looking at examples (illustrated in Section 8). With priors like the uniform, the answers

from the cluster algorithm tend to be partitions with a large number of clusters, and a small number

of subjects per cluster.

The situation for the Ewens-Pitman prior and the hierarchical uniform prior is different.

Theorem 4 Suppose that we use either the Ewens-Pitman prior or the hierarchical uniform prior

on the class of all partitions R = ∪np=1Rp. Then, when sampling from Mr1, the Bayesian procedure

is consistent. That is, in the probability space generated by the cluster classes {Rp, p = 1, ..., T},

lim
n→∞

[Mr1 ] Pr(R1|y) = 1,

so the correct model is chosen with probability 1.

Proof. The proof is given in Appendix A.4

Thus, both of these priors exhibit good asymptotic behavior, but if we investigate further we

see that, ultimately, the hierarchical uniform prior is the preferred choice. Consider the rate of

convergence of the posterior probability of R1 to one. For the Ewens-Pitman prior the convergence

rate is O
(

logn
np−1

)
, while for the HUP it is O

(
1

np−1

)
. This means that the convergence rate is faster

when using the HUP than with the Ewens-Pitman prior. The difference is the presence of the log n

term. We also note that the rate with the Ewens-Pitman prior also depends on the value of λ; the

larger this value the slower the consistency under the null.
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7 Search Algorithm

Here we develop a hybrid search algorithm, using a Metropolis-Hastings (MH) algorithm that has

stationary distribution proportional to the Bayes factor times the prior odds. The hybrid algorithm

is a mixture of a random walk and a jump. We use a random walk component to be able to explore

locally, and the jump allows escape from regions with small Bayes factors.

In setting up the algorithm there is one immediate computational problem, that of calculating

the correct probabilities for the MH ratio. In the random walk piece we solve this problem by using

the biased random walk of Booth et al. (2008). Suppose, for example, that at iteration t we have

the partition r
(t)

p(t)
. We now generate a candidate partition r′p′ from a distribution G, and accept the

move with probability

min

 π(p, r′p|n)Brp′ ,r1

π(p, r
(t)

p(t)
|n)B

r
(t)

p(t)
,r1

G(r
(t)

p(t)
|r′p′)

G(r′p′ |r
(t)

p(t)
)
, 1


where π(p, r′p|n) is the prior, and the Bayes factor Brp′ ,r1 is given in (13). The computational problem

arises in calculating the ratio of candidate probabilities, which could entail summing over an enormous

number of partitions. However, the biased random walk has the property that G(x|y) = G(y|x), and

thus these terms cancel from the MH ratio. (Details and properties of the biased random walk are

discussed in Booth et al. (2008), so here we will just give a brief description.)

Biased Random Walk

With the current iteration at r
(t)

p(t)
, we generate a candidate r′p′ as:

1. If p = 1, choose an observation at random from all n observations, and move the chosen

observation to its own cluster. The new configuration is r′p′ .

2. If p > 1, choose an observation at random from all n observations.

(a) If the object is a singleton cluster, move it to one of the p−1 other clusters with probability

1/(p− 1).

(b) If the object is not a singleton cluster, move it to one of the p− 1 other clusters, or to its

own (new) cluster, each with probability 1/p.

This is the biased random walk which, although similar to a nearest neighbor random walk, has

the property that the probability of the move r
(t)

p(t)
→ r′p′ is the same as the probability of the move

r′p′ → r
(t)

p(t)
, eliminating the necessity for calculating these probabilities in the Metropolis -Hastings

algorithm.
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Unfortunately, the mixing from the biased random walk is too slow for clustering large, or even

medium, data sets. If we are in a good portion of the space then the random walk will explore that

portion, but we also need to be able to escape from areas with small Bayes factors. To do so we have a

second piece in the search algorithm, a jump based on sampling from the Ewens-Pitman distribution

of (8). We can sample from this distribution using a number of algorithms (see, for example, Neal

2000), but we will draw our candidate using the algorithm of Kyung et al. (2010), which has been

shown to mix better than many of its competitors. (Note that using the Ewens-Pitman distribution

to drive a search has nothing to do with the choice of model space priors.)

Jumping with the Ewens-Pitman Distribution

We use the Ewens-Pitman distribution to generate a random jump because it is easy to calculate the

Metropolis-Hastings correction. With the current iteration at r
(t)

p(t)
, we generate a candidate r′p′ as

follows: Start with np = (n1, . . . np) obtained from r
(t)

p(t)
, and draw q from the Dirichlet distribution

q ∼ f(q|np) =
Γ(2n)∏p

j=1 Γ(nj + 1)

p∏
j=1

q
nj
j (15)

Given q, we draw n′p′ from

n′p′ ∼ P (n′p′ |q) ∼
Γ(n)

Γ(n+λ)λ
p′
∏p′

j=1 Γ(n′j)
(

n
n′1 ··· n′p′

)∏p′

j=1 q
n′j
j∑

n
Γ(n)

Γ(n+λ)λ
p
∏p
j=1 Γ(nj)

(
n

n1 ··· np
)∏p

j=1 q
nj
j

(16)

It has been established (see Kyung et al. 2010) that the Ewens-Pitman distribution (8) is the sta-

tionary distribution of the transition kernel K(np,n
′
p′) =

∫
q P (n′p′ |q)f(q|np) dq. Moreover, to

sample from this distribution we can generate a candidate according to the multinomial distribution(
n

n1 ··· np
)∏p

j=1 q
nj
j and apply an MH step with ratio

K(np,n′p′ )

K(n′
p′ ,np)

= λp
′−p

∏p′
j=1 Γ(n′j)∏p
j=1 Γ(nj)

.

Finally, we take our search to be a mixture of the biased random walk and the jump, choosing

the biased random walk with probability a, set by the user. In our searches we have taken a = .75.

8 Examples

In this section we give a number of examples to illustrate the working of the clustering algorithm,

and examine the effect of the choice of the prior on model space. We start with the well known

Galaxy data (Roeder 1990) as a benchmark. We then look at some simulated examples, where we

check that the HUP intrinsic Bayesian procedure gives the highest weight to the correct model, and
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Figure 4: Galaxy data (Roeder 1990), 81 observations. The left panel shows the top two

clusters from the search algorithm with HUP weights on the Bayes factors, with red lines

delimiting the clusters. The right panel shows the top two clusters from the search algo-

rithm with unweighted Bayes factors, with blue lines delimiting the clusters. In each panel

the top and bottom clusters differ by one observation marking a shift point in the long

middle string. The stochastic search was run for 50, 000 iterations.

then we look at the effectiveness of the search algorithm. We then apply our method to two data

sets, and provide comparisons with other algorithms.

8.1 Galaxy Data

The Galaxy data consists of 81 observations on the velocity (km/second) of 81 galaxies in the Corona

Borealis Region. It is well accepted that there are between 5 and 7 clusters in the data (Richardson

and Green 1997, Jasra et al. 2005). Using an intercept-only model, we ran our algorithm with HUP

and uniform weights.

The results are displayed in Figure 4, where we see that the search with HUP weights gave five

clusters in the top partition with Bayes factor=6.2× 1010, while the second partition, which differs

by the switching of one galaxy, has Bayes factor=4.9× 1010. The top 25 partitions in the search all

had 5 clusters. In contrast, the unweighted uniform search found partitions with 9 clusters, which

by consensus is too many clusters. From the results in Section 6, this performance is expected.
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Table 2: For n = 7 and n = 9, 25 data sets were generated from the indicated configuration

class and Bayes factors were calculated for every partition of n = 7 or n = 9 observations.

For the posterior odds columns, the number is the average percentile of the posterior odds

for the true model. For K-means we calculated the proportion of times that K-means found

the true partition out of ten tries. K-means was always started at the number of clusters

in the true partition.

Posterior Odds
Configuration Class Uniform Ewens-Pitman HUP K-means

(7) 0.942 0.999 0.999 −−−
(3, 4) 0.919 0.971 0.945 0.440

n = 7 (2, 2, 3) 0.908 0.826 0.919 0.470

(1, 2, 2, 2) 0.787 0.446 0.713 0.390

(1, 1, 1, 2, 2) 0.426 0.131 0.402 0.450

(9) 0.949 1.000 1.000 −−−
(3, 3, 3) 0.927 0.922 0.846 0.140

n = 9 (2, 3, 4) 0.902 0.933 0.909 0.270

(2, 2, 2, 3) 0.967 0.809 0.939 0.160

(1, 2, 3, 3) 0.875 0.755 0.734 0.210

(1, 2, 2, 2, 2) 0.944 0.469 0.891 0.130

8.2 Evaluating the Models

Next we evaluate the ability of the HUP intrinsic Bayes procedure to find the best model, regardless

of the search algorithm. We look at two examples, for n = 7 and n = 9, where we can enumerate all

of the models. We generate the data from the model

Yij ∼ N(µi, 1), j = 1, . . . , ni, i = 1, . . . , k, µi = i, (17)

where
∑

i ni = n, n = 7 or 9.

For a particular configuration of n and ni we generated 25 data sets. For each data set we

calculated all of the Bayes factors. For n = 7 there are 877 distinct partitions, and for n = 9 there

are 21, 147 distinct partitions. For each of the 25 data sets we checked if the posterior odds of a model

using the uniform prior, the Ewens-Pitman prior, and the HUP prior, was in the top 10 models

The results are shown in Table 2, where we see excellent performance of the Bayes factors with

HUP weights. The Ewens-Pitman weight does well except when there are many small clusters (such

as (1, 1, 1, 2, 2), begin dominated by the HUP weights. However, for these cases the unweighted Bayes

factor does the best, reflecting its bias toward partitions with a large number of clusters. However,
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Figure 5: Simulated data (n = 30) from model (18). The two leftmost panels show the data

(upper) without cluster labels. The lower leftmost panel shows the cluster-identified data

along with the true models (grey) and the least squares fit based on knowing the cluster

membership. The middle panels show typical results from the search with HUP weights, and

the right panels show typical results from unweighted searches. The stochastic search was

run for 50, 000 iterations.

these are the only cases where the unweighted Bayes factor does better than the HUP weights.

The comparison with K-means shows that K-means has a very difficult time in identifying the

true model. Since K-means only returns one partition, we could not calculate percentiles, but instead

gave it ten tries to identify the true model. We also helped out K-means by starting with the correct

number of clusters, that is, telling it to find a partition with the same number of clusters as the true

cluster. Even with this help its performance was well below that of the Bayes factors.

8.3 Simulated Regression Data

Next we give an example of the search algorithm using data simulated from the regression model

Yi ∼ β0 + β1xi + εi, i = 1, . . . , ni, εi ∼ N(0, 1) (18)
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with

First ni observations : β0 = −1, β1 = −2

Second ni observations : β0 = 2, β1 = 0

Third ni observations : β0 = −1, β1 = 3

and the xi are generated uniformly in (0, 10). We actually did a large number of simulations, using

data sets of different sizes and different configurations. Here we only present a typical result; the

other simulations were very similar.

Our example has ni = 10, and we use the data shown in Figure 5. The algorithm was run for

50, 000 iterations and representative partitions, from the top 25 using HUP weights, and the top 25

using unweighted Bayes factors, are shown in the figure.

First note that when looking at the data without clusters identified (upper left panel) it is quite

difficult to discern what the true clusters might be. The lower left panel shows that least squares,

with knowledge of the true clusters, does reasonably well. In this light, the performance of the Bayes

factor with HUP weights is quite remarkable. The top 25 partitions all had either 2 or 3 clusters,

and the two partitions that we show are representative. The three cluster partition, in particular,

does a very good job of recovering the underlying structure.

Similar to what we saw with the galaxy data, this example shows that searching large data

sets without prior weights on the partitions leads to finding partitions with too many clusters.

The rightmost panels in Figure 5 are representative of the top 25 partitions from the unweighted

Bayes factor search, all of which had seven clusters. The underlying structure is not recovered. As

mentioned before, one reason why we are doing cluster analysis is to find partitions with a small

number of meaningful clusters. As of now it seems that the best way to accomplish this is to have

HUP weights on the partitions.

8.4 Analyses and Comparisons

In this section we look at two different data sets, from Economics and Biostatistics. We see that

in all cases the HUP Intrinsic Bayes procedure performs extremely well, not only giving reasonable

answers in its own right, but also comparing favorable with other approaches.
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Figure 6: Results from the analysis of the Concha y Toro data. From left to right the

panels correspond to Quintana and Iglesias, Intrinsic Bayes with HUP weights, and Mclust,

respectively. The top panels show scatterplots of the stock index against growth, with

the plotting character corresponding to the cluster identifier. the lower panels show the

regression fit to the largest cluster, plotting the remaining points as outliers.

8.4.1 Chilean Stock Market

Quintana and Iglesias (2003) (QI) analyze economic data pertaining to the winemaker Concha Y

Toro. This is simple linear regression data, using a model of the form

yi = β0 + β1xi + εi,

where y = the Concha Y Toro stock return, and x = a stock market index, similar to the US

Dow-Jones Index. The data are fully described by QI.

QI use a version of their full PPM model set up for outlier detection, as they are interested in

seeing if the Concha Y Toro returns follow the market. The model they fit has a common slope

parameter, and they use individual intercepts to create the clusters. They use a PPM Gibbs sampler

with the algorithm of Bush and MacEachern (1996). For a variety of parameter choices their analysis

supports partitioning the data into a small number of clusters, three or four, where one cluster is
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very large (signifying the data without outliers) and the other clusters are very small, containing the

outliers. The partition that they obtained, assuming normal errors, is displayed in Figure 6.

We ran the data with our algorithm using only default settings and HUP weights, that is, we

did not tune the model for outliers. The results from that analysis are also shown in Figure 6. We

found four clusters, one large one containing the data without outliers, and three others which can

clearly be considered outliers. Thus, our default analysis give results that were very similar to those

of QI, with the exception that our algorithm was only set up to find clusters, not specifically to find

outliers.

Finally, we also ran Mclust on the data, which also found three clusters. However, it did not find

one large one and two small ones but rather two large ones and one small one. The larger cluster

from Mclust had a slope similar to the large clusters found by QI and the HUP Bayes procedure, but

the second largest cluster found by Mclust was not found by the others; both QI and HUP Bayes

put those observations into the first cluster.

8.4.2 Developmental Toxicology Data

We look at the data analyzed by Dunson et al. (2003), and many other authors (see the references

therein). It is data of a developmental toxicity study of ethylene glycol in mice conducted by the

National Toxicology Program, and first reported in Price et al. (1985). During pregnancy, mice were

exposed to four levels of ethylene glycol (0, 0.75, 1.5, and 3 mg/kg). The response of interest is the

fetal weight of the babies. Other covariates were measured but here, like Dunson et al. (2003), we

focus on two others (in addition to dose level): litter size, and a 0− 1 indicator of malformations.

After removing some observations with missing data, the remaining data set had n = 1048

observations. We ran a stochastic search for 50, 000 iterations using the Bayes factors with HUP

weights; we did not use the unweighted Bayes factor due to its previous poor performance. The

results are shown in Figure 7, which shows a partition that is typical of the top 10. (All of the top

10 partitions had five clusters, and there was little difference among them.

The five clusters are quite interesting, showing that the partition aligns the mice on the intercepts,

with fetal weight increasing as we move from Cluster 1 to Cluster 5 and with the slopes having

little effect. The effect of dose level is similar in the clusters (parallel lines), decreasing the fetal

weight slightly at higher doses. However, it is clear that in this partition the effect of the ethylene

glycol dose is independent of the fetal weight. Also, the effect of litter size on fetal weight is also

minimal in the partition. The only substantial slope effects are in Cluster 1 for the litter size and

malformation. There we see an effect of increasing weight with litter size, and that zero malformations

align with the lower fetal weight mice, and increased malformations as associated with higher fetal
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Figure 7: Results from the cluster analysis of the developmental toxicology data. Shown

are the results of the partition with the highest posterior odds; the top 10 partitions all

had five clusters. The upper left panel shows the data identified by cluster assignment,

and the remaining panels show the slopes of the clusters for each of the three explana-

tory variables. The stochastic search was run for 50, 000 iterations. The cluster sizes are

(23, 341, 187, 301, 196). (For clarity, not all points are plotted in the clusters, and they are

jiggled.)

weights. However, in the other clusters, where all fetal weights are higher, there is no effect due to

malformation.

9 Discussion

We have presented an objective Bayesian analysis for clustering based on product partition models

using a model selection approach. Our major finding concerns the sensitivity of the procedure to the

choice of the prior on model space, and we have seen that the “default” uniform prior on models leads

not only to an inconsistent procedure, but also to small sample performance that is not desirable.
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Our preferred prior for models, the hierarchical uniform prior, arises from a decomposition of the

set of partitions of the sample in classes dictated by the number of clusters. Each class has also been

split in subclasses where in each subclass we group all the partitions that only differ by a permutation

of the components of the sample, and thus come from the same sampling model. This alleviates the

difficulty of assigning a prior to the partitions inside the classes. A truncated Poisson-Intrinsic prior

has been chosen for the number of clusters; it gives decreasing probability to partitions with higher

numbers of clusters, and has performed well in our evaluations.

We also note the following about clustering priors:

◦ Cluster analysis is only useful, and will only result in useful inferences, when the answer contains

a relatively small number of clusters. The prior should move us toward partitions with a small

number of clusters, so the clusters themselves are large.

◦ Even if the truth is that there are a large number of clusters (say 500 observations have 70 true

clusters) this results in a useless inference. In such a case it is better to find partitions with a

small number of clusters that explain a large portion of the variability.

◦ The inconsistency of the uniform prior on the space of models, and its less than desirable small

sample performance, eliminates it from serious consideration in clustering problems. It ends

up driving the search toward partitions with many small clusters. The other two priors that

we looked at, the Ewens-Pitman and Jensen-Liu are clearly preferable to the uniform prior,

but still cannot be preferred over the HUP.

◦ The limit results of Theorem 2 also point our some undesirable behavior. The fact that only

the HUP converges to a proper prior tells us that it is correctly compensating for the increasing

number of models, which the other priors do not do.

Other points that we would like to emphasize are:

◦ The findings in our examples are consistent with the theory. The HUP produces partitions

with a small number of clusters, while the unweighted Bayes factors almost always return a

configuration with a large number of small clusters.

◦ We can apply some of our previous results (Casella et al. 2009, Moreno et al. 2010) to show

that our procedure is consistent for choosing between two nested cluster models, as for instance

Mrp and Mr1 , assuming that one of them is the true one. In such a pairwise comparison the

prior on model space plays no role, as there are only two models. Pairwise consistency holds

when the number of clusters grows at the rate p = O(nα) for α < 1, and for α = 1 when the

models Mr1 and Mrp are not too close.
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◦ Lemma 1 shows that for large n, when sampling from Mr1 , the Bayes factor Brpr1(y) is constant

across partitions rp in the class Rp. This asymptotic result is not limited to intrinsic Bayes

factors; for example we know that BIC is asymptotically equivalent to the intrinsic Bayes factor.

Moreover, Casella et al. (2009) show that the approximation holds for a wide class of priors.
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A Technical Details

In this section we prove the asymptotic results in Theorems 3, 4, and 2. We begin with some

preliminary lemmas that are needed, and then give detailed proofs of the theorems.

A.1 Preliminary Lemmas

Lemma 2 For every p = 1, . . . , under the conditions n1 ≤ · · · ≤ np, and
∑p

i=1 ni = n, the sum of

the series ∑(
n

n1 . . . np

)
(λ+ 1)−n1 . . . (λ+ p)−np ≈ O

(
λHp
p

)−n
,

where λHp is the harmonic mean of (λ+ 1)−1, . . . , (λ+ p)−1.

Proof. To evaluate the sum, multiply and divide by (
∑p

i=1
1
λ+i)

n. Sum the resulting multinomial

to get ∑(
n

n1 · · ·np

)
(λ+ 1)−n1 . . . (λ+ p)−np =

(
p∑
i=1

1

λ+ i

)n
≈ O

(
λHp
p

)−n
.

Lemma 3 For every p the sum

S =
∑
Cp

1

n1 × · · · × np
,

where Cp = {(n1, ..., np) : n1 ≤ · · · ≤ np,
∑p

i=1 ni = n}, is of order O(n−1(log n)p−1).

Proof. Denote xi = ni/n, for i = 1, . . . , p− 1. Then we can write the sum S as

S = n−p
∑ 1

x1 · x2 · · · (1− x1 − x2 − · · · − xp−1)
,
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where the multiple sum is extended for xi = 1/n, . . . , 1−1/n in steps of size 1/n, for i = 1, . . . , p−1.

Now, the sum can be approximated, for large values of n, by the multiple integral

np−1

∫ 1−1/n

1/n
· · ·
∫ 1−1/n

1/n

1

x1 · x2 · · · (1− x1 − x2 − · · · − xp−1)
dx1 . . . dxp−1 = np−1I,

where the factor np−1 is the adjustment due to the 1/n step for each variable, and I is the integral..

Thus, the original sum is ∑ 1

n1 · · · · · np
≈ n−1I.

To evaluate the integral, consider the change of variables

θ1 = x1, θi =
xi

1−
∑i−1

j=1 xj
, i = 2, . . . , p− 1.

As the Jacobean J of the variables (x1, . . . , xp−1) with respect to the new variables (θ1, . . . , θp−1) is

J =
∏p−1
i=1

(
1−

∑i−1
j=1 xj

)
, the integral I in terms of the new variables can be written as

I =

∫ 1− 1
n

1
n

. . .

∫ 1− 1
n−p+2

1
n−p+2

1

θ1 · θ2 · · · · · θp−1
dθ1 . . . dθp−1

which is equal to

I =

p−1∏
i=1

∫ 1− 1
n−i+1

1
n−i+1

1

θ i
dθi =

p−1∏
i=1

log(n− i) ∼ O((log n)p−1).

A.2 Proof of Theorem 2

For part(a), the proof is immediate as the distribution of Xn on the simplex Sp is a discrete uniform

distribution on the points of the simplex of the form
(
n1
n , . . . ,

np
n

)
, where n1 ≤ · · · ≤ np and n1 +

· · ·+ np = 1. From the definition of the hierarchical uniform prior,

Pr(Xn =
(n1

n
, . . . ,

np
n

)
|Rp) = Pr(Rp;n1,...,np |Rp) =

1

b(n, p)
≈ p!

np−1
,

and this discrete uniform prior on the lattice

Lp = {
(n1

n
, . . . ,

np
n

)
, n1 ≤ · · · ≤ np, n1 + · · ·+ np = 1,
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converges in distribution to a continuous uniform distribution on the simplex, which is a Dirichlet

D(1, . . . , 1) truncated at the simplex Sp.

For part (b), for the Ewens-Pitman prior, it follows that the prior probability of Rp;n1,...,np , given

p and λ, is

Pr(Rp;n1...np |Rp) ∝
(

n

n1 · · ·np

)
×

p∏
i=1

Γ(ni) =
1

n1 · · · · · np
.

Thus, the distribution of Xn on the simplex Sp is

Pr
(
Xn =

(n1

n
, . . . ,

np
n

)∣∣∣Sp) ∝ 1
n1
n · · · · ·

np
n

.

It is clear from the form of the probability mass function of the discrete random vector Xn, that

the limiting distribution is given by the function (2).

For part (c), we can discard the redundancy term R(n1, . . . , np) for large n, as it is of an order

of magnitude much smaller than
(

n
n1...np

)
. We then write the prior probability of Rp;n1,...,np as

Pr(Rp;n1,...,np |Rp) ∝
(

n

n1 · · ·np

)
.

This implies that

Pr(Zn =
(
n1, . . . , np

)
|Rp) ∝

(
n

n1 · · ·np

)
,

But, because of the proportionality symbol, we can write the preceding as

Pr(Zn =
(
n1, . . . , np

)
|Rp) ∝

(
n

n1 · · ·np

)(
1

p

)n
=

(
n

n1 · · ·np

)(
1

p

)n1

· · ·
(

1

p

)np
,

and this means that the unrestricted Zn follows a multinomial distribution M(n; 1/p, . . . , 1/p).

For large n, because of the restriction n1 + · · · + np = n, this multinomial distribution can

be approximated by a multivariate normal distribution with the same mean vector and covariance

matrix, that is,

Zn ≈ Np(n(1/p, . . . , 1/p)t,Σp),

where the covariance matrix Σp = (n/p2)(pI−J), where J is a matrix of ones. Thus, the distribution

of Xn can be approximated by the following multivariate normal distribution

Xn ≈ Np

(
(1/p, . . . , 1/p)t,

1

n2
Σp

)
,

which converges to the degenerate random variable at mean vector (1
p , . . . ,

1
p), as the covariance

matrix of Xn converges to the null matrix.
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For part (d), from the expression of the Jensen-Liu prior (9), it follows that the prior probability

of Rp;n1,...,np , given p and λ, can be written

Pr(Zn = (n1, . . . , np)|Rp) = Pr(Rp;n1...np |Rp) ∝
(

n

n1 · · ·np

) p∏
i=1

(
(λ+ i)−1∑
i′(λ+ i′)−1

)ni
.

Thus, the distribution of Zn is the following multinomial distribution

Zn ∼M
(
n;

(λ+ 1)−1∑
i′(λ+ i′)−1

, . . . ,
(λ+ p)−1∑
i′(λ+ i′)−1

)
,

and, for large n, the distribution of Xn can be approximated by the following multivariate normal

distribution

Xn ≈ Np

(
(λ+ 1)−1∑
i′(λ+ i′)−1

, . . . ,
(λ+ p)−1∑
i′(λ+ i′)−1

)′
,

1

n2
Σp,λ

)
,

which converges to a random variable degenerate at the mean vector as the covariance matrix of Xn

converges to the null matrix.

Note. The Jensen-Liu prior restricted to the simplex shows a similar behavior to the uniform

prior on the set of all cluster models with at most T clusters, and both are inconsistent. Indeed,

when λ goes to infinity, the Jensen-Liu prior converges to the Uniform prior on the set of all cluster

models for all p ≤ T .

A.3 Proof of Theorem 3

Uniform Prior First, we will prove that the posterior probability of RT converges to 1, when n

goes to infinity. The uniform prior on the set of all models results in the prior distribution on the

cluster classes Pr(Rp) ∝ S(p)
n , which can be approximated for large n by Pr(Rp) ≈ pn

p! .

Applying Bayes theorem, we have that, for p = 1, . . . , T

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ pn

p!

(
k p+ 1

n

) k(p−1)
2

.

Therefore, normalizing the Bayes factors, we have that as n→∞,

Pr(Rp|y) =

pn

p!

(k p+1
n

) k(p−1)
2∑T

p=1
pn

p!

(k p+1
n

) k(p−1)
2

→

 0 for p = 1, . . . , T − 1,

1 for p = T .

To show inconsistency in the configuration classes, we have to show that within RT the pos-

terior distribution of the models does not converge in distribution to the degenerate distribution
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corresponding to the vertex R1. In fact, from Theorem 2, under the uniform prior on the set of

all models, this posterior distribution converges to the degenerate distribution on the equal size T

clusters δ( 1
T
,..., 1

T
) ∈ RT . This completes the proof for the uniform distribution

Jensen-Liu From (9) it is easy to see that the marginal prior of p or, equivalently Rp, is

Pr(Rp) ∝ λp−1(λ+ p)
∑(

n

n1 . . . np

)
(λ+ 1)−n1 . . . (λ+ p)−np .

Using the asymptotic approximation of Lemma 2 the prior can be approximated by

Pr(Rp) ∝ λp−1(λ+ p)

(
λHp
p

)−n
.

Recalling the expression for the Bayes factor given in Lemma 1, we have from Bayes Theorem, for

p = 1, . . . , T,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ λp−1(λ+ p)

(
λHp
p

)−n(k p+ 1

n

) k(p−1)
2

.

The leading term of the posterior probability is (λHp /p)
−n, which is an increasing function of p for

every n. Normalizing the posterior probabilities we finally get

Pr(Rp|y)→

 0 for p = 1, . . . , T − 1,

1 for p = T ,

It is also the case that within the cluster class RT the posterior distribution of the models does

not converge in distribution to the degenerate distribution corresponding to the vertex R1. In fact,

from Theorem 2, this posterior distribution converges to the degenerate distribution of the model

M( λH
T

p(λ+T )
,...,

λH
T

p(λ+1)

) ∈ RT . This completes the proof.

Note that the limiting distribution in this case depends on the value of the paramenter λ of the

Jensen-Liu prior. Further, as λ increases, the limiting distribution converges to the T -cluster model

with equal size clusters.

A.4 Proof of Theorem 4

Hierarchical Uniform Prior We will prove that the posterior distribution of R1 converges to

1, when n goes to infinity. By Bayes theorem, and the fact that the prior over the cluster classes
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R1, . . . ,Rp is uniform, we have that, for p = 1, . . . , T ,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ Bp 1(y) =

(
k p+ 1

n

) k(p−1)
2

.

Therefore, normalizing the Bayes factors, we have that, as n→∞,

Pr(Rp|y) =

(k p+1
n

) k(p−1)
2∑T

p=1

(k p+1
n

) k(p−1)
2

→

 0 for p = 2, . . . , T ,

1 for p = 1.

Ewens-Pitman Prior From (8), the joint prior for p and rp, we can calculate the marginal prior

of p or, equivalently Rp, as

Pr(Rp) ∝ λp−1np−1
∑ 1

n1 · · · · · np
.

Again recalling Lemma 1, Bayes Theorem yields, for p = 1, . . . , T ,

Pr(Rp|y) ∝ Pr(Rp)×Bp 1(y) ∝ λp−1np−1
∑ 1

n1 · · · · · np

(
k p+ 1

n

) k(p−1)
2

.

Using Lemma 3, we can approximate the posterior by

Pr(Rp|y) ≈ Cpλp−1n−1(log n)p−1

(
k p+ 1

n

) k(p−1)
2

≈ Kp,k,λ n
−1(n−k/2 log n)p−1,

where Cp is a finite positive constant depending on p and Kp,k,λ is a positive constant depending on

p, k and λ. It is now clear that, as n→∞,

Pr(Rp|y)→

 0 for p = 2, . . . , T ,

1 for p = 1.
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